Effects of caloric restriction and growth hormone resistance on the expression level of peroxisome proliferator-activated receptors superfamily in liver of normal and long-lived growth hormone receptor/binding protein knockout mice.

نویسندگان

  • Michal M Masternak
  • Khalid A Al-Regaiey
  • Marc Michael Del Rosario Lim
  • Vanesa Jimenez-Ortega
  • Jacob A Panici
  • Michael S Bonkowski
  • John J Kopchick
  • Andrzej Bartke
چکیده

Growth hormone receptor/binding protein knockout (GHR-KO) mice live approximately 40% longer than their normal siblings do. These mice have dramatically reduced plasma levels of insulin-like growth factor 1 (IGF1) and enhanced insulin sensitivity. We examined the expression level of peroxisome proliferator-activated receptors (PPARs) and retinoid X receptors family genes in the livers of normal and GHR-KO mice fed ad libitum or subjected to long-term 30% caloric restriction (CR). The levels of PPARgamma and PPARalpha messenger RNA and proteins and the levels of retinoid X receptors messenger RNA were elevated in long-lived GHR-KO mice as compared to normal mice with no major effect of CR in either genotype. These findings suggest that enhanced insulin sensitivity of GHR-KO mice may be related to the altered actions of PPARs family members in the liver. The results also indicate that CR may increase insulin sensitivity through a different mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Caloric restriction results in decreased expression of peroxisome proliferator-activated receptor superfamily in muscle of normal and long-lived growth hormone receptor/binding protein knockout mice.

Resistance to growth hormone, reduced insulin-like growth factor 1 (IGF1) action, and enhanced insulin sensitivity are likely mediators of extended life span and delayed aging process in growth hormone receptor/binding protein knockout (GHR-KO) mice. Fat metabolism and genes involved in fatty acid oxidation are strongly involved in insulin action. Using real-time polymerase chain reaction and w...

متن کامل

Long-lived growth hormone receptor knockout mice: interaction of reduced insulin-like growth factor i/insulin signaling and caloric restriction.

Reduced IGF-I/insulin signaling and caloric restriction (CR) are known to extend the life span and delay age-related diseases. To address the interaction of these two interventions, we subjected normal (N) and long-lived GH receptor knockout (GHRKO) mice to CR for 20 months starting at weaning. We also used bovine GH transgenic (bGH Tg) mice, which overexpress GH and are short-lived and insulin...

متن کامل

Role of peroxisome proliferator-activated receptor alpha and gamma in antiangiogenic effect of pomegranate peel extract

Objective(s): Herbal medicines are promising cancer preventive candidates. It has been shown that Punica granatum L. could inhibit angiogenesis and tumor invasion. In this study, we investigated whether the anti-angiogenic effect of pomegranate peel extract (PPE) is partly attributable to Peroxisome proliferator-activated receptors (PPARs) activation in the Human Umbilical Vein Endothelial Cell...

متن کامل

The effects of aging and genotype on NMDA receptor expression in growth hormone receptor knockout (GHRKO) mice.

Caloric restriction enhances N-methyl-D-aspartate (NMDA) receptor binding and upregulates messenger RNA expression of the GluN1 subunit during aging. Old growth hormone receptor knockout mice resemble old calorically restricted rodents in enhanced life span and brain function, as compared with aged controls. This study examined whether aged growth hormone receptor knockout mice also show enhanc...

متن کامل

Major Facilitator Superfamily Domain-Containing Protein 2a (MFSD2A) Has Roles in Body Growth, Motor Function, and Lipid Metabolism

The metabolic adaptations to fasting in the liver are largely controlled by the nuclear hormone receptor peroxisome proliferator-activated receptor alpha (PPARα), where PPARα upregulates genes encoding the biochemical pathway for β-oxidation of fatty acids and ketogenesis. As part of an effort to identify and characterize nutritionally regulated genes that play physiological roles in the adapta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journals of gerontology. Series A, Biological sciences and medical sciences

دوره 60 11  شماره 

صفحات  -

تاریخ انتشار 2005